Title: | Statistical Tools for Immune Correlates Analysis of Vaccine Clinical Trial Data |
---|---|
Description: | Various semiparametric and nonparametric statistical tools for immune correlates analysis of vaccine clinical trial data. This includes calculation of summary statistics and estimation of risk, vaccine efficacy, controlled effects (controlled risk and controlled vaccine efficacy), and mediation effects (natural direct effect, natural indirect effect, proportion mediated). See Gilbert P, Fong Y, Kenny A, and Carone, M (2022) <doi:10.1093/biostatistics/kxac024> and Fay MP and Follmann DA (2023) <doi:10.48550/arXiv.2208.06465>. |
Authors: | Avi Kenny [aut, cre] |
Maintainer: | Avi Kenny <[email protected]> |
License: | GPL-3 |
Version: | 1.2.1 |
Built: | 2024-11-01 14:20:11 UTC |
Source: | https://github.com/avi-kenny/vaccine |
Format estimates returned by est_ce
as a table
as_table(..., which = "CR", labels = NA)
as_table(..., which = "CR", labels = NA)
... |
One or more objects of class |
which |
One of c("CR", "CVE"); controls whether the table contains CR or CVE values. |
labels |
A character vector of length equal to length(list(...)) representing curve labels |
A table of CR or CVE values
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_np <- est_ce(dat=dat, type="NP", t_0=578) ests_table <- as_table(ests_cox, ests_np) head(ests_table)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_np <- est_ce(dat=dat, type="NP", t_0=578) ests_table <- as_table(ests_cox, ests_np) head(ests_table)
Run a set of diagnostic plots. Note that for this function to
work, est_ce
must be run with return_extras=T
.
diagnostics(obj)
diagnostics(obj)
obj |
An object of class |
A combined plot of model diagnostics
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_ce(dat=dat, type="NP", t_0=578, return_extras=TRUE) diagnostics(ests_np)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_ce(dat=dat, type="NP", t_0=578, return_extras=TRUE) diagnostics(ests_np)
Estimate controlled risk (CR) curves and/or controlled vaccine efficacy (CVE) curves. See references for definitions of these curves.
est_ce( dat, type = "Cox", t_0, cr = TRUE, cve = FALSE, cr_placebo_arm = F, s_out = seq(from = min(dat$s, na.rm = TRUE), to = max(dat$s, na.rm = TRUE), l = 101), ci_type = "transformed", placebo_risk_method = "KM", return_p_value = FALSE, return_extras = FALSE, params_cox = params_ce_cox(), params_np = params_ce_np() )
est_ce( dat, type = "Cox", t_0, cr = TRUE, cve = FALSE, cr_placebo_arm = F, s_out = seq(from = min(dat$s, na.rm = TRUE), to = max(dat$s, na.rm = TRUE), l = 101), ci_type = "transformed", placebo_risk_method = "KM", return_p_value = FALSE, return_extras = FALSE, params_cox = params_ce_cox(), params_np = params_ce_np() )
dat |
A data object returned by load_data |
type |
One of c("Cox", "NP"). This specifies whether to estimate the curve(s) using a marginalized Cox proportional hazards model or using a monotone-constrained nonparametric estimator. |
t_0 |
Time point of interest |
cr |
Boolean. If TRUE, the controlled risk (CR) curve is computed and returned. |
cve |
Boolean. If TRUE, the controlled vaccine efficacy (CVE) curve is computed and returned. |
cr_placebo_arm |
Boolean. If TRUE, the CR curve is estimated for the placebo arm instead of the vaccine arm. |
s_out |
A numeric vector of s-values (on the biomarker scale) for which cve(s) and/or cr(s) are computed. Defaults to a grid of 101 points between the min and max biomarker values. |
ci_type |
One of c("transformed", "truncated", "regular", "none"). If ci_type="transformed", confidence intervals are computed on the logit(CR) and/or log(1-CVE) scale to ensure that confidence limits lie within [0,1] for CR and/or lie within (-inf,1] for CVE. If ci_type="truncated", confidence limits are constructed on the CR and/or CVE scale but truncated to lie within [0,1] for CR and/or lie within (-inf,1] for CVE. If ci_type="regular", confidence limits are not transformed or truncated. If ci_type="none", confidence intervals are not computed. |
placebo_risk_method |
One of c("KM", "Cox"). Method for estimating overall risk in the placebo group. "KM" computes a Kaplan-Meier estimate and "Cox" computes an estimate based on a marginalized Cox model survival curve. Only relevant if cve=TRUE. |
return_p_value |
Boolean; if TRUE, a P-value corresponding to the null
hypothesis that the CVE curve is flat is returned. The type of P-value
corresponds to the |
return_extras |
Boolean; if TRUE, objects useful for debugging are returned. |
params_cox |
A list of options returned by
|
params_np |
A list of options returned by |
A list of the form list(cr=list(...), cve=list(...))
containing CR and/or CVE estimates. Each of the inner lists contains the
following:
s
: a vector of marker values corresponding to s_out
est
: a vector of point estimates
ci_lower
: a vector of confidence interval lower limits
ci_upper
: a vector of confidence interval upper limits
Gilbert P, Fong Y, Kenny A, and Carone, M (2022). A Controlled Effects Approach to Assessing Immune Correlates of Protection. <doi:10.1093/biostatistics/kxac024>
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_np <- est_ce(dat=dat, type="NP", t_0=578)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_np <- est_ce(dat=dat, type="NP", t_0=578)
Estimate mediation effects, including the natural direct effect (NDE), the natural indirect effect (NIE), and the proportion mediated (PM). See references for definitions of these objects.
est_med( dat, type = "NP", t_0, nde = TRUE, nie = TRUE, pm = TRUE, scale = "RR", params_np = params_med_np() )
est_med( dat, type = "NP", t_0, nde = TRUE, nie = TRUE, pm = TRUE, scale = "RR", params_np = params_med_np() )
dat |
A data object returned by load_data |
type |
One of c("NP", "Cox"). This specifies whether to estimate the effects using a marginalized Cox proportional hazards model or using a nonparametric estimator. |
t_0 |
Time point of interest |
nde |
Boolean. If TRUE, the natural direct effect is computed and returned. |
nie |
Boolean. If TRUE, the natural indirect effect is computed and returned. |
pm |
Boolean. If TRUE, the proportion mediated is computed and returned. |
scale |
One of c("RR", "VE"). This determines whether NDE and NIE estimates and CIs are computed on the risk ratio (RR) scale or the vaccine efficacy (VE) scale. The latter equals one minus the former. |
params_np |
A list of options returned by |
A dataframe containing the following columns:
effect
: one of c("NDE", "NIE", "PM")
est
: point estimate
se
: standard error of point estimate
ci_lower
: a confidence interval lower limit
ci_upper
: a confidence interval upper limit
Fay MP and Follmann DA (2023). Mediation Analyses for the Effect of Antibodies in Vaccination <doi:10.48550/arXiv.2208.06465>
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_med(dat=dat, type="NP", t_0=578)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_med(dat=dat, type="NP", t_0=578)
Estimate overall risk and vaccine efficacy.
est_overall(dat, t_0, method = "Cox", risk = TRUE, ve = TRUE)
est_overall(dat, t_0, method = "Cox", risk = TRUE, ve = TRUE)
dat |
A data object returned by load_data |
t_0 |
Time point of interest |
method |
One of c("KM", "Cox"), corresponding to either a Kaplan-Meier estimator ("KM") or a marginalized Cox proportional hazards model ("Cox"). |
risk |
Boolean. If TRUE, the controlled risk (CR) curve is computed. |
ve |
Boolean. If TRUE, the controlled vaccine efficacy (CVE) curve is computed. |
A dataframe containing estimates
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) est_overall(dat=dat, t_0=578, method="KM")
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) est_overall(dat=dat, t_0=578, method="KM")
A dataset from the HVTN 505 clinical trial
data(hvtn505)
data(hvtn505)
A data frame with 1,950 rows and 10 variables:
pub_id: Unique individual identifier
trt: Treatment Assignment: 1=Vaccine, 0=Placebo
HIVwk28preunbl: Indicator of HIV-1 infection diagnosis on/after study week 28 (day 196) prior to Unblinding Date (Apr 22, 2013).
HIVwk28preunblfu: Follow-up time (in days) for HIV-1 infection diagnosis endpoint as of the Unblinding Date (22Apr2013) occuring on/after study week 28 (day 196).
age: Age (in years) at randomization
BMI: Body Mass Index: (Weight in Kg)/(Height in meters)**2
bhvrisk: Baseline behavioral risk score
casecontrol: Indicator of inclusion in the case-control cohort
wt: Inverse-probability-of-sampling weights, for the case-control cohort
IgG_env: IgG Binding to gp120/140
IgG_V2: IgG Binding to V1V2
IgG_V3: IgG Binding to V3
https://atlas.scharp.org/cpas/project/HVTN%20Public%20Data/HVTN%20505/begin.view
This function takes in user-supplied data and returns a data
object that can be read in by summary_stats
,
est_ce
, est_med
, and other estimation
functions. Data is expected to come from a vaccine clinical trial,
possibly involving two-phase sampling and possibly including a biomarker
of interest.
load_data( time, event, vacc, marker, covariates, weights, ph2, strata = NA, data, covariates_ph2 = FALSE )
load_data( time, event, vacc, marker, covariates, weights, ph2, strata = NA, data, covariates_ph2 = FALSE )
time |
A character string; the name of the numeric variable representing observed event or censoring times. |
event |
A character string; the name of the binary variable corresponding to whether the observed time represents an event time (1) or a censoring time (0). Either integer (0/1) or Boolean (T/F) values are allowed. |
vacc |
A character string; the name of the binary variable denoting whether the individual is in the vaccine group (1) or the placebo group (0). Accepts either integer (0/1) or Boolean (T/F) values. |
marker |
A character string; the name of the numeric variable of biomarker values. |
covariates |
A character vector; the names of the covariate columns. Columns values should be either numeric, binary, or factors. Character columns will be converted into factors. |
weights |
A character string; the name of the numeric variable containing inverse-probability-of-sampling (IPS) weights. |
ph2 |
A character string; the name of the binary variable representing whether the individual is in the phase-two cohort (1) or not (0). Accepts either integer (0/1) or Boolean (T/F) values. |
strata |
A character string; the name of the variable containing strata identifiers (for two-phase sampling strata). |
data |
A dataframe containing the vaccine trial data. |
covariates_ph2 |
A boolean; if at least one of the covariates is measured only in the phase-two cohort, set this to TRUE. |
An object of class vaccine_dat
.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505)
This should be used in conjunction with est_ce
to
set parameters controlling Cox model estimation of controlled effect
curves; see examples.
params_ce_cox(spline_df = NA, spline_knots = NA, edge_ind = FALSE)
params_ce_cox(spline_df = NA, spline_knots = NA, edge_ind = FALSE)
spline_df |
An integer; if the marker is modeled flexibly within the Cox model linear predictor as a natural cubic spline, this option controls the degrees of freedom in the spline; knots are chosen to be equally spaced across the range of the marker. |
spline_knots |
A numeric vector; as an alternative to specifying
|
edge_ind |
Boolean. If TRUE, an indicator variable corresponding to the lower limit of the marker will be included in the Cox model linear predictor. |
A list of options.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce( dat = dat, type = "Cox", t_0 = 578, params_cox = params_ce_cox(spline_df=4) )
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce( dat = dat, type = "Cox", t_0 = 578, params_cox = params_ce_cox(spline_df=4) )
This should be used in conjunction with est_ce
to
set parameters controlling nonparametric estimation of controlled effect
curves; see examples.
params_ce_np( dir = "decr", edge_corr = FALSE, grid_size = list(y = 101, s = 101, x = 5), surv_type = "survML-G", density_type = "binning", density_bins = 15, deriv_type = "m-spline", convex_type = "GCM" )
params_ce_np( dir = "decr", edge_corr = FALSE, grid_size = list(y = 101, s = 101, x = 5), surv_type = "survML-G", density_type = "binning", density_bins = 15, deriv_type = "m-spline", convex_type = "GCM" )
dir |
One of c("decr", "incr"); controls the direction of monotonicity. If dir="decr", it is assumed that CR decreases as a function of the marker. If dir="incr", it is assumed that CR increases as a function of the marker. |
edge_corr |
Boolean. If TRUE, the "edge correction" is performed to adjust for bias near the marker lower limit (see references). It is recommended that the edge correction is only performed if there are at least (roughly) 10 events corresponding to the marker lower limit. |
grid_size |
A list with keys |
surv_type |
One of c("Cox", "survSL", "survML-G", "survML-L"); controls the method to use to estimate the conditional survival and conditional censoring functions. If type="Cox", a survival function based on a Cox proportional hazard model will be used. If type="survSL", the Super Learner method of Westling 2023 is used. If type="survML-G", the global survival stacking method of Wolock 2022 is used. If type="survML-L", the local survival stacking method of Polley 2011 is used. |
density_type |
One of c("binning", "parametric"); controls the method to use to estimate the density ratio f(S|X)/f(S). |
density_bins |
An integer; if density_type="binning", the number of bins to use. If density_bins=0, the number of bins will be selected via cross-validation. |
deriv_type |
One of c("m-spline", "linear"); controls the method to use to estimate the derivative of the CR curve. If deriv_type="linear", a linear spline is constructed based on the midpoints of the jump points of the estimated function (plus the estimated function evaluated at the endpoints), which is then numerically differentiated. deriv_type="m-spline" is similar to deriv_type="linear" but smooths the set of points (using the method of Fritsch and Carlson 1980) before differentiating. |
convex_type |
One of c("GCM", "CLS"). Whether the greatest convex minorant ("GCM") or convex least squares ("CLS") projection should be used in the smoothing of the primitive estimator Gamma_n. convex_type="CLS" is experimental and should be used with caution. |
A list of options.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_ce( dat = dat, type = "NP", t_0 = 578, params_np = params_ce_np(edge_corr=TRUE, surv_type="survML-L") )
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_np <- est_ce( dat = dat, type = "NP", t_0 = 578, params_np = params_ce_np(edge_corr=TRUE, surv_type="survML-L") )
This should be used in conjunction with est_med
to
set parameters controlling nonparametric estimation of mediation effects;
see examples.
params_med_np( grid_size = list(y = 101, s = 101, x = 5), surv_type = "survML-G", density_type = "binning", density_bins = 15 )
params_med_np( grid_size = list(y = 101, s = 101, x = 5), surv_type = "survML-G", density_type = "binning", density_bins = 15 )
grid_size |
A list with keys |
surv_type |
One of c("Cox", "survSL", "survML-G", "survML-L"); controls the method to use to estimate the conditional survival and conditional censoring functions. If type="Cox", a survival function based on a Cox proportional hazard model will be used. If type="survSL", the Super Learner method of Westling 2023 is used. If type="survML-G", the global survival stacking method of Wolock 2022 is used. If type="survML-L", the local survival stacking method of Polley 2011 is used. |
density_type |
One of c("binning", "parametric"); controls the method to use to estimate the density ratio f(S|X)/f(S). |
density_bins |
An integer; if density_type="binning", the number of bins to use. If density_bins=0, the number of bins will be selected via cross-validation. |
A list of options.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_med <- est_med( dat = dat, type = "NP", t_0 = 578, params_np = params_med_np(surv_type="survML-L") )
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_med <- est_med( dat = dat, type = "NP", t_0 = 578, params_np = params_med_np(surv_type="survML-L") )
Plot CR and/or CVE curves
plot_ce( ..., which = "CR", density_type = "none", dat = NA, dat_alt = NA, zoom_x = "zoom in", zoom_y = "zoom out", labels = NA )
plot_ce( ..., which = "CR", density_type = "none", dat = NA, dat_alt = NA, zoom_x = "zoom in", zoom_y = "zoom out", labels = NA )
... |
One or more objects of class |
which |
One of c("CR", "CVE"); controls whether to plot CR curves or CVE curves. |
density_type |
One of c("none", "kde", "kde edge"). Controls the type of estimator used for the background marker density plot. For "none", no density plot is displayed. For "kde", a weighted kernel density estimator is used. For "kde edge", a modified version of "kde" is used that allows for a possible point mass at the left edge of the marker distribution. |
dat |
The data object originally passed into |
dat_alt |
Alternative data object; a list containing one or more
dataframes, each of the form |
zoom_x |
Either one of c("zoom in", "zoom out") or a vector of length 2. Controls the zooming on the X-axis. The default "zoom in" will set the zoom limits to the plot estimates. Choosing "zoom out" will set the zoom limits to show the entire distribution of the marker. Entering a vector of length 2 will set the left and right zoom limits explicitly. |
zoom_y |
Either "zoom out" or a vector of length 2. Controls the zooming on the Y-axis. The default "zoom out" will show the entire vertical range of the estimates. Entering a vector of length 2 will set the lower and upper zoom limits explicitly. |
labels |
A character vector of length equal to the length of list(...), representing plot labels. Only used if length(list(...))>1. |
A plot of CR/CVE estimates
# Plot one curve data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) plot_ce(ests_cox, density_type="kde", dat=dat) # Trim display of plot according to quantiles of the biomarker distribution ests_cox_tr <- trim(ests_cox, dat=dat, quantiles=c(0.05,0.95)) plot_ce(ests_cox_tr, density_type="kde", dat=dat) # Plot multiple curves (same biomarker) ests_np <- est_ce(dat=dat, type="NP", t_0=578) plot_ce(ests_cox, ests_np, density_type="kde", dat=dat) # Plot multiple curves (two different biomarkers) dat2 <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_env", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox2 <- est_ce(dat=dat2, type="Cox", t_0=578) dat_alt <- list( data.frame(s=dat$s[dat$a==1], weights=dat$weights[dat$a==1]), data.frame(s=dat2$s[dat2$a==1], weights=dat2$weights[dat2$a==1]) ) plot_ce(ests_cox, ests_cox2, density_type="kde", dat_alt=dat_alt)
# Plot one curve data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) plot_ce(ests_cox, density_type="kde", dat=dat) # Trim display of plot according to quantiles of the biomarker distribution ests_cox_tr <- trim(ests_cox, dat=dat, quantiles=c(0.05,0.95)) plot_ce(ests_cox_tr, density_type="kde", dat=dat) # Plot multiple curves (same biomarker) ests_np <- est_ce(dat=dat, type="NP", t_0=578) plot_ce(ests_cox, ests_np, density_type="kde", dat=dat) # Plot multiple curves (two different biomarkers) dat2 <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_env", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox2 <- est_ce(dat=dat2, type="Cox", t_0=578) dat_alt <- list( data.frame(s=dat$s[dat$a==1], weights=dat$weights[dat$a==1]), data.frame(s=dat2$s[dat2$a==1], weights=dat2$weights[dat2$a==1]) ) plot_ce(ests_cox, ests_cox2, density_type="kde", dat_alt=dat_alt)
TO DO
summary_stats(dat, quietly = FALSE)
summary_stats(dat, quietly = FALSE)
dat |
A data object returned by 'load_data'. |
quietly |
Boolean. If true, output will not be printed. |
A list containing values of various summary statistics.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) summary_stats(dat=dat)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) summary_stats(dat=dat)
Removes a subset of estimates returned by est_ce
trim(ests, dat, quantiles, placebo = FALSE)
trim(ests, dat, quantiles, placebo = FALSE)
ests |
An object of class |
dat |
The data object originally passed into |
quantiles |
A vector of length 2 representing the quantiles of the
marker distribution at which to trim the data; if, for example,
|
placebo |
Boolean; if TRUE, quantiles are computed based on the marker distribution in the placebo arm instead of the vaccine arm |
A modified copy of ests
with the data trimmed.
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_cox_tr <- trim(ests_cox, dat=dat, quantiles=c(0.05,0.95)) plot_ce(ests_cox_tr, density_type="kde", dat=dat)
data(hvtn505) dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt", marker="IgG_V2", covariates=c("age","BMI","bhvrisk"), weights="wt", ph2="casecontrol", data=hvtn505) ests_cox <- est_ce(dat=dat, type="Cox", t_0=578) ests_cox_tr <- trim(ests_cox, dat=dat, quantiles=c(0.05,0.95)) plot_ce(ests_cox_tr, density_type="kde", dat=dat)